Warning !

Soas is no longer maintained. You are strongly encouraged to switch to its successor, QSoas

Bibliography

1
Christophe Léger and Patrick Bertrand.
Direct electrochemistry of redox enzymes as a tool for mechanistic studies.
Chem. Rev., 108(7):2379-2438, 2008.
http://dx.doi.org/10.1021/cr0680742.

2
V. Fourmond et al.
Correcting for electrocatalyst desorption or inactivation in chronoamperometry experiments.
Submitted, 2009.

3
Hendrik A. Heering, Joel H. Weiner, and Fraser A. Armstrong.
Direct detection and measurement of electron relays in a multicentered enzyme: voltammetry of electrode-surface films of Escherichia coli fumarate reductase, an iron-sulfur flavoprotein.
J. Am. Chem. Soc., 119(48):11628-11638, 1997.
http://dx.doi.org/10.1021/ja9723242.

4
K. Heffron, C. Léger, R. A. Rothery, J. H. Weiner, and F. A. Armstrong.
Determination of an optimal potential window for catalysis by Escherichia coli dimethyl sulfoxide reductase, and hypothesis on the role of Mo(V) in the reaction pathway.
Biochemistry, 40(10):3117-3126, 2001.
http://dx.doi.org/10.1021/bi002452u.

5
Judy Hirst, Arthur Sucheta, Brian A. C. Ackrell, and Fraser A. Armstrong.
Electrocatalytic voltammetry of succinate dehydrogenase: direct quantification of the catalytic properties of a complex electron-transport enzyme.
J. Am. Chem. Soc., 118(21):5031-5038, 1996.
http://dx.doi.org/10.1021/ja9534361.

6
Vincent Fourmond, Bénédicte Burlat, Sébastien Dementin, Pascal Arnoux, Monique Sabaty, Séverine Boiry, Bruno Guigliarelli, Patrick Bertrand, David Pignol, and Christophe Léger.
Major mo(v) epr signature of rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. relation to other molybdoenzymes from the dmso reductase family.
J. Phys. Chem. B, 2008.
http://dx.doi.org/10.1021/jp807092y.

7
V. Plichon and E. Laviron.
Theoretical study of a two-step reversible electrochemical reaction associated with irreversible chemical reactions in thin layer linear potential sweep voltammetry.
J. Electroanal. Chem., 71:143-156, 1976.
http://dx.doi.org/10.1016/S0022-0728(76)80030-7.

8
J. H. Reeves, S. Song, and E. F. Bowden.
Application of square wave voltammetry to strongly adsorbed quasireversible redox molecules.
Anal. Chem., 71(1):683-688, 1993.
http://Dx.doi.org/10.1021/10.1021/ac00054a006.

9
Hendrik A. Heering, Madhu S. Mondval, and Fraser A. Armstrong.
Using the pulsed nature of staircase cyclic voltammetry to determine interfacial electron-transport rates of adsorbed species.
Anal. Chem., 71:174-182, 1999.
http://dx.doi.org/10.1021/ac980844p.

10
Lars J. C. Jeuken, J. P. McEvoy, and F. A. Armstrong.
Insights into gated ET kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin.
J. Phys. Chem. B, 106(9):2304-2313, 2002.
http://dx.doi.org/10.1021/jp0134291.

11
Christophe Léger, Kerensa Heffron, Harsh R. Pershad, Elena Maklashina, César Luna-Chavez, Gary Cecchini, Brian A. C. Ackrell, and Fraser A. Armstrong.
Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase.
Biochemistry, 40:11234-11245, 2001.
http://dx.doi.org/10.1021/bi010889b.

12
C. Léger, A. K. Jones, W. Roseboom, S. P. J. Albracht, and F. A. Armstrong.
Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase.
Biochemistry, 41(52):15736-15746, 2002.
http://dx.doi.org/10.1021/bi026586e.

13
C. Léger, A. K. Jones, S. P. J. Albracht, and F. A. Armstrong.
Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes.
J. Phys. Chem. B, 106(50):13058-13063, 2002.
http://dx.doi.org/10.1021/jp0265687.



Christophe Leger 2009-02-24