Solvent isotope effects on the glucokinase reaction

Negative co-operativity and a large inverse isotope effect in \(^2\text{H}_2\text{O} \)

Denise POLLARD-KNIGHT and Athel CORNISH-BOWDEN
Department of Biochemistry, University of Birmingham
(Received November 4, 1983) – EJB 83 1186

The solvent isotope effects on the reaction catalysed by rat-liver glucokinase have been studied. At low concentrations of glucose and high concentrations of MgATP\(^2^-\) there is an inverse solvent isotope effect of 3.5. At high glucose concentrations there is a normal solvent isotope effect of 1.3. In \(^1\text{H}_2\text{O} \) there is positive co-operativity with respect to glucose [Storer, A. C. and Cornish-Bowden, A. (1976) *Biochem. J.* 159, 7–14], but this is changed to negative co-operativity in \(^2\text{H}_2\text{O} \). The half-saturation points for both glucose and MgATP\(^2^-\) are decreased in \(^2\text{H}_2\text{O} \) compared with those in \(^1\text{H}_2\text{O} \). Explanations of these effects in terms of the mnemonical model proposed by Storer and Cornish-Bowden [*Biochem. J.* 65, 61–69 (1977)] were considered in computer simulation. Two interpretations could account for the results, either a decrease in the rate of interconversion of the two forms of free enzyme postulated in the model, or an increase in the affinity for glucose of the enzyme form with the lower affinity in \(^1\text{H}_2\text{O} \). The results of a proton-inventory analysis were consistent with either of these interpretations. The solvent isotope effects thus provide additional evidence for the mnemonical model as an explanation of glucokinase co-operativity.

Hexokinase type IV (or type D) is the isoenzyme principally responsible for the phosphorylation of glucose in the livers of mammals and other vertebrates. The name 'glucokinase' is commonly applied to this isoenzyme and for convenience we shall do so in this paper. It shows positive co-operativity with respect to glucose in the physiological range but Michaelis-Menten kinetics with respect to ATP under all conditions [1,2]. Such properties are consistent with the presumed function of glucose phosphorylation in the liver as a means of controlling the blood-glucose concentration.

Glucokinase is monomeric under all conditions of the assay [3–5] and has only a single active site [6]. Hence quasi-equilibrium models involving subunit interactions [7,8] or reversible association of the enzyme [9,10] cannot explain glucokinase co-operativity.

To account for the co-operativity Storer and Cornish-Bowden [11] proposed a kinetic model based on the 'mnemonical' model of Ricard et al. [12], applied originally to wheat-germ hexokinase L1 [13]. The essential feature of the model, which has since received support from isotope-exchange studies [14], is that free glucokinase exists in two forms E and E' that bind glucose with different affinities (Fig. 1). We have reviewed the properties of glucokinase more fully elsewhere [15].

In view of the postulated dependence of the co-operativity on the conformational states of glucokinase, and because of the drastic effects that \(^2\text{H}_2\text{O} \) can sometimes have on protein structural equilibria [16–18] we have studied the kinetics of the glucokinase reaction in \(^2\text{H}_2\text{O} \). A preliminary report of those results has appeared [19].

MATERIALS AND METHODS

Materials

Glucokinase was purified to a specific activity of 2.5 kat/kg from the livers of well fed Wistar rats, essentially by the method of Holroyde et al. [3]. After purification the enzyme was stored in 0.3-M KCl, 1-mM dithiothreitol, 50-mM glucose, 30% (v/v) glycerol, 20-mM triethanolamine HCl buffer, pH 7.0 at \(-20^\circ\text{C} \). In experiments where very low concentrations of glucose were required the excess present in the storage buffer was removed by passing the enzyme down a Sephadex G-25 column pre-equilibrated with 20-mM triethanolamine/HCl buffer at pH 7.0 containing 0.1-M KCl, 1-mM dithiothreitol, 10% (v/v) glycerol and 1-mM EDTA. Residual glucose, if any, was determined by the ferricyanide assay for reducing sugars [20]. Glucose added with the enzyme was always taken into

Enzyme. Hexokinase, ATP:1-hexose 6-phosphotransferase (EC 2.7.1.1), type IV; this isoenzyme is commonly known as glucokinase.

Symbol. The symbol L represents both \(^1\text{H} \) and \(^2\text{H} \). Thus pL is a generalized pH that applies to mixtures of \(^1\text{H}_2\text{O} \) and \(^2\text{H}_2\text{O} \).

Abbreviations: Glc, glucose; ATP, MgATP\(^2^-\); ADP, MgADP\(^-\); G6P, glucose 6-phosphate
concentration by 1.0 mM, an excess sufficient to maintain
the mixtures the total Mg²⁺ concentration exceeded the total ATP
concentration of MgATP²⁻ at a high and almost constant
mixtures were calculated from the total concentrations of
ATP⁻ and free Mg²⁺ at low concentrations [22].

Other materials
ATP (disodium salt), glycylglycine, 4-morpholinepropa-
sulphonic acid, dithiothreitol, NADP⁺, glucose-6-phosphate
dehydrogenase (type VII from baker’s yeast) and 99.8 atom %
²H₂O were obtained from Sigma Chemical Co. Ltd. MgCl₂
was the anhydrous salt from Aldrich Chemical Company.

Standard solutions
The ATP concentration was determined spectrophot-
ometrically [21], and concentrations of MgATP²⁻ in reaction
mixtures were calculated from the total concentrations of
MgCl₂ and ATP as described previously [22]. In all reaction
mixtures the total Mg²⁺ concentration exceeded the total ATP
concentration by 1.0 mM, an excess sufficient to maintain
the concentration of MgATP²⁻ at a high and almost constant
proportion (86 ± 2%) of the total ATP concentration and
ATP²⁻ and free Mg²⁺ at low concentrations [22].

The pL of solutions in ²H₂O was taken as 0.4 greater than
the reading of the pH-meter in all cases [23]. ¹H₂O solutions
were titrated to the correct pL using KOH or HCl, and
²H₂O solutions were similarly titrated with KO²H and ²HCl.

Enzyme assays
Glucokinase was assayed by coupling the production of
glucose 6-phosphate to the reduction of NADP⁺ by means of
glucose-6-phosphate dehydrogenase as coupling enzyme, un-
der the conditions given previously [24], which were based on
the assay of DiPietro and Weinhouse [25].

Recorder traces were essentially straight during the first
3 min of each assay and initial rates were obtained with a ruler
and pencil. This linearity indicated that there was no exchange
of hydrogen atoms important in the reaction during the time
course of the experiment [26].

The solvent isotope effect is defined as the rate in ¹H₂O
divided by the rate in ²H₂O. A normal isotope effect is greater
than unity, i.e. the reaction is faster in ¹H₂O; whereas there
is an inverse isotope effect if the reaction is faster in ²H₂O.

Analysis of data
Computer simulation was used to investigate the proper-
ties of different models. For each of these the rate equation
was derived automatically by means of the program described
previously [27] after it had been modified to be capable of
carrying out numerical simulation with specified values of rate
constants.

Non-linear regression was done by the method of Cornish-
Bowden and Koshland [28] modified as described by Wharton
et al. [29].

Computing was done on an International Computers Ltd,
1906A computer.

THEORY

General theory of the proton inventory
A proton-inventory analysis [26,30,31] is an experimental
way of determining the number of exchanging protons
involved in a reaction and the contribution of each proton
to the total isotope effect. It is necessary to determine the rate of a
reaction as a function of the mole fraction of ²H₂O. Solvent
isotope effects in ¹H₂O:²H₂O mixtures can be described by the
general form of the Gross-Butler equation, expressed here for a
rate constant k:

\[k_\text{obs} = \frac{k_o \Pi (1 - n + n\phi)}{\Pi (1 - n + n\phi)} \]

In this equation n is the atom fraction of ²H in the mixed
solvent system; k_o is the rate constant in pure ¹H₂O; k_a is the
rate constant in solvent in which the atom fraction of ²H is n; \phi_i
and \phi_j are the isotope fractionation factors for the ith tran-
sition-state proton and jth reactant proton respectively. The \Pi in
the numerator indicates that we require the product of the
expressions in parentheses evaluated for all i (all transition-
state protons), and the \Pi in the denominator expresses the
same requirement for all reactant protons. A fractionation
factor is the equilibrium constant for exchange of ²H with
solvent for a particular site and is thus a measure of the
preference of the site for ²H over ¹H relative to the corre-
Sponding preference of a single site in the solvent molecule
[32].

One can apply essentially the same equation to solvent
isotope effects on equilibria, except that now the rate constants
k_o and k_a are replaced by equilibrium constants K_o and K_a
respectively, and the product state of the reaction replaces the
transition state.

Although the general form of the Gross-Butler equation
may seem hopelessly complicated, with an impossibly large
number of protons to be considered, it is greatly simplified
in practice by the fact that for protons unaffected by the reaction
the transition-state and reactant fractionation factors are
equal and thus the corresponding terms cancel. In general one
can assess the number of protons involved in a reaction by the
form of a plot of k_o against n. In the simplest case, a straight line
indicates that the Gross-Butler equation is linear in n, so that
only one fractionation factor different from unity remains in
the numerator after cancellation and none remain in the
denominator: this would indicate a ‘one-proton’ transition
state. Plots curving upwards would indicate transition states
with two or more protons. A downward curvature may be
produced if a larger inverse isotope effect is partially offset by
smaller normal isotope effects, etc., as discussed by Schowen
[26].

In the present work observed plots of k_o against n were
fitted by non-linear regression to various special cases of the
Gross-Butler equation. The special cases were obtained from
plausible models that had been shown by computer simulation
to be capable of describing the kinetics of glucokinase.

Specific theory for the proton inventory
of the glucokinase reaction
Let us consider the expression for the isotope effect on the
rate of binding of glucose to an equilibrium mixture of two
forms E and E' with an equilibrium constant K for the ratio
[E]/[E']. If k and k' are the rate constants for binding of glucose
to E and E' respectively, the observed rate constant k_\text{obs} will be
the mean of k and k' weighted according to the proportions of
E and E' in the mixture:

\[k_\text{obs} = \frac{(k' + kK) / (1 + K)}{1} \]
If replacement of 1H$_{2}$O by 2H$_{2}$O has no effect on k and k', but has an effect on K because of m protons that have fractionation factors ϕ and ϕ' in E and E' respectively, the value of the equilibrium constant becomes

$$K_m = K_0(1-n+n\phi')^m/(1-n+n\phi)^m$$

where K_0 and K_m are the values of K in pure 1H$_{2}$O and in a mixture with mole fraction n of 2H$_{2}$O respectively. This must now be substituted for K in the expression for k_{obs}:

$$k' = \frac{k_0(1-n+n\phi')^m}{(1-n+n\phi)^m}$$

$$k_{obs} = \frac{k' + k_0(1-n+n\phi')^m}{1 + k_0(1-n+n\phi')^m}$$

In a similar way one can derive an equation to describe the effect on the observed kinetics of a solvent isotope effect on any step in the reaction.

RESULTS

pL profile

At saturating concentrations of glucose and MgATP the pL curves are similar, but the pL optimum is about 0.5 higher in 2H$_{2}$O than in 1H$_{2}$O and there is a normal solvent isotope effect of 1.3 (Fig. 2). The shift in pL optimum is of the magnitude expected if the ionization of a weak acid is important in catalysis under the conditions used [33]. It also indicates that the deuterated solvent does not drastically effect the conformations of the enzyme complexes. The lack of effect on the shape of the pL profile may be contrasted with observations recently reported for a mixture of isoenzymes of hexokinase from yeast [34]: for this preparation the pL profile in 2H$_{2}$O showed an anomalously steep dependence of the rate on pL at the low-pL side of the maximum, a feature that was absent from the pL profile in 1H$_{2}$O.

In the remainder of the present study rates were measured both at the pL optima and at equal pL values in both solvents to eliminate effects of any changes in pL optima resulting from changes in substrate concentrations. There were, however, only slight differences between the two sets of results, as expected from the broadness of the pL profiles. Only the results obtained at equal pL values will be shown.

Dependence of solvent isotope effects on the glucose concentration

The rate of the glucokinase-catalysed phosphorylation of glucose was measured at 4.3-mM MgATP (near-saturating) and at glucose concentrations in the range 0.1–20 mM in 1H$_{2}$O and 2H$_{2}$O (Fig. 3). In 1H$_{2}$O there is positive co-operativity with respect to glucose and the half-saturation point for glucose is 5 mM, as in previous work [2]. In 2H$_{2}$O, however, there is negative co-operativity and the enzyme is half-saturated at 3.5-mM glucose. These differences indicate a solvent isotope effect of 0.29 at 0.1-mM glucose (i.e., an inverse solvent isotope effect of 3.5). As the glucose concentration increases the inverse solvent isotope effect declines, so that there is no isotope effect at 1.8-mM glucose and a normal isotope effect of 1.3 at saturating glucose, i.e., the solvent isotope effect on the limiting rate V is 1.3. The results were unaffected by whether the enzyme had been stored and equilibrated before the experiment in 1H$_{2}$O or 2H$_{2}$O.

The behaviour was similar at low concentrations of MgATP, but the inverse solvent isotope effect with 0.1-mM glucose was increased to 4.5 and the concentration at which there was no isotope effect was shifted to 2.5-mM glucose.

A fuller investigation of the kinetics in 2H$_{2}$O with respect to glucose is shown in Fig. 4. The enzyme was half-saturated at 3.5-mM glucose at all MgATP concentrations, as compared with a value of 5-mM glucose in 2H$_{2}$O.

MgATP kinetics

As in 1H$_{2}$O [2], glucokinase displayed Michaelis-Menten kinetics with respect to MgATP at all glucose concentrations (Fig. 5), the apparent K_m for MgATP being lowered from 0.55 mM in 1H$_{2}$O to 0.28 mM in 2H$_{2}$O. Both the nature and the magnitude of the solvent isotope effect were virtually unaffected by the MgATP concentration.
Fig. 4. Dependence of the rate on the glucose concentration in H_2O. MgATP concentrations were 0.48 mM (●), 0.87 mM (■), 1.5 mM (Δ), 2.1 mM (○) and 3.3 mM (□).

Fig. 5. Michaelis-Menten kinetics with respect to MgATP. Glucose concentrations were 1 mM (●), 10 mM (■), 25 mM (Δ), 50 mM (○) and 100 mM (□). The lack of curvature at all glucose concentrations indicates that there is no co-operativity with respect to MgATP.

At 1-mM glucose the inverse isotope effect was increased by lowering the MgATP concentration; even at 100-mM glucose the normal isotope effect seen at saturating MgATP can be converted to an inverse isotope effect at very low MgATP concentrations. These results indicate that the solvent isotope effect is due to an equilibrium rather than a rate effect, because lowering the MgATP concentration must cause the binding of glucose to come to equilibrium: if the isotope effect were a rate effect it would be abolished under these conditions.

Simulation studies

Simulation of the mnemonic model (Fig. 1) for glucokinase revealed two possible explanations of the solvent isotope effects.

The existence of 2H isotope effects on equilibria between different states of a protein is well documented [16-18], and so the first possibility we considered is that the equilibrium constant between the two forms of free enzyme is altered in H_2O. The results with respect both to glucose and to MgATP can be accounted for if E, the form of free enzyme released at the end of the catalytic cycle (see Fig. 1), is stabilized in H_2O relative to the other form E'. As little as a 10-fold change in equilibrium constant (a 20-fold decrease in the rate constant for conversion of E into E' with a twofold decrease in the reverse rate constant) appears sufficient to effectively abolish the positive co-operativity. However, negative co-operativity cannot be generated by changing these rate constants alone, but it becomes possible if it is assumed that E is capable of binding MgATP before glucose at very low glucose and high MgATP concentrations. Isotope-exchange studies have provided evidence that this alternative pathway exists [14], supplementing evidence from studies of the kinetics with glucose analogues [5].

Simulation also showed that the results could be accounted for if 2H_2O were to increase the rate constant for binding of glucose to E', the form of free enzyme that binds glucose more weakly in H_2O. In this case an increase in rate constant by a factor of about 100 would be sufficient. With this model no participation of an alternative pathway for binding substrates is needed in order to generate negative co-operativity, but the affinity of E' for glucose would have to become greater than that of E. The mechanism of glucokinase catalysis in H_2O would then correspond to that reported for wheat-germ hexokinase L₁ (in H_2O) [13].

The proton inventory

Although the results can be explained on a theoretical basis in terms of the mnemonic model, a proton-inventory analysis [26, 30-32] provides a more experimental approach to determining the origin of solvent isotope effects. The plot of observed rate against mole fraction of H_2O obtained for the glucokinase-catalysed reaction in mixture of H_2O and 2H_2O at 0.25-mM glucose and 4.3-mM MgATP showed an upward curvature, with a net inverse isotope effect of 2.5, as expected from previous results at this glucose concentration in H_2O. However, model discrimination was poor as several different models gave a reasonably good fit to the data. The experiment was therefore repeated but with observations concentrated at
Table 1. Non-linear regression results for the proton inventory

<table>
<thead>
<tr>
<th>Model for isotope effects</th>
<th>Number of parameters</th>
<th>Residual sum of squares</th>
<th>F value for lack of fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear (one-proton transition state)</td>
<td>2</td>
<td>0.34959</td>
<td>10.91b</td>
</tr>
<tr>
<td>Log-linear (medium effect)</td>
<td>2</td>
<td>0.19251</td>
<td>5.54b</td>
</tr>
<tr>
<td>Opposing effects of one transition-state proton and one reactant-state protons</td>
<td>3</td>
<td>0.08110</td>
<td>2.04a</td>
</tr>
<tr>
<td>Stabilization of E in 2H$_2$O</td>
<td>5</td>
<td>0.08344</td>
<td>2.56a</td>
</tr>
<tr>
<td>Increased rate of glucose binding to E' in 2H$_2$O</td>
<td>5</td>
<td>0.08345</td>
<td>2.57a</td>
</tr>
</tbody>
</table>

a Lack of fit not significant at 5% level of confidence.

b Lack of fit significant at 1% level of confidence.

Table 2. Analysis of variance calculation for stabilization of E

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Degree of freedom</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>25</td>
<td>0.08344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>10</td>
<td>0.005265</td>
<td>0.0005265</td>
<td>2.564</td>
</tr>
<tr>
<td>Pure error</td>
<td>15</td>
<td>0.03079</td>
<td>0.002053</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Simulation studies revealed two possible explanations of the solvent isotope effects on the glucokinase reaction. The first of these involves stabilization of E', the form of free enzyme that in 1H$_2$O has the higher affinity for glucose. In this interpretation, at low glucose concentrations in 1H$_2$O E' would relax to E, the form of free enzyme with the lower affinity in 1H$_2$O for glucose, and the observed rates would mainly reflect binding of glucose to E'. In 2H$_2$O, however, stabilization of E' would decrease the likelihood of relaxation to E, with the result that the reaction would be faster in 2H$_2$O. This ceases to be an important consideration at higher glucose concentrations, because then E' is sequestered as an enzyme-glucose complex before it has time to relax to E'; thus under these conditions there is little difference between the rates in 1H$_2$O and in 2H$_2$O. At very high glucose concentrations we can account for the slower reaction in 2H$_2$O by supposing that we are now observing the isotope effects on a different step in the mechanism. This may be, for example, the release of glucose 6-phosphate from the enzyme, which is probably the rate-limiting step when the enzyme is saturated with substrates [14].

The second explanation of the results involves an increase in the affinity of E' for glucose in 2H$_2$O. This would again result in a faster reaction in 2H$_2$O than in 1H$_2$O at low glucose concentrations, i.e. an inverse solvent isotope effect. As with the other explanation, increasing the concentration of glucose to saturation would bring about an isotope effect on a different step of the mechanism, one that proceeds more slowly in 2H$_2$O.

Both hypotheses account for the effects of MgATP on the kinetics observed in 2H$_2$O by supposing that lowering the concentration of MgATP causes the two forms of free enzyme to equilibrate with one another and with the enzyme-glucose complex. The fact that the inverse isotope effect is still evident under these conditions means that it must be an equilibrium rather than a rate effect.

The proton-inventory analysis provides further evidence for these interpretations, though it does not, unfortunately, discriminate between them. A plot with a downward curvature, such as the one observed in Fig. 6, is usually interpreted as implying one or more transition-state protons with ground-state fractionation factors of unity. The greatest curvature possible with this approach occurs when the number of such protons is infinite, a so-called medium effect. A greater curvature than this can only be due to a contribution from the ground state and so in our experiments the medium effect can be ruled out. Similar considerations apply to equilibrium isotope effects with the product state substituted for the transition state.

The results of fitting the data to five models are shown in Table 1. The first three of these are included primarily because models of this type are normally considered in proton-inventory studies and not because they appear particularly appropriate for the glucokinase reaction. It may be seen that two of these models fit badly enough to be rejected, but the third, in which the isotope effect is considered to arise from opposing effects of one proton in the transition state and one proton in the reactant state, actually fits somewhat better than either of the two models considered in the simulation, though both of these fit within experimental error. In all cases the significance of lack of fit was assessed by standard methods [35], the details of the calculation being shown for one of the models in Table 2.
with the molecular environment [36] it would be rash to assume that this remains the case in the extremely complicated environment of the active site of an enzyme. One biological system that has been studied, formate-tetrahydrofolate ligase, shows a fractionation factor of 0.36 [16], another very low value.

A possible interpretation of the fractionation factors in the glucokinase-catalysed reaction may be derived from the chemical studies of Kreevoy and Liang [37]. They calculated that certain kinds of homoconjugate complexes A₂H⁻ can give isotopic fractionation factors in the range 0.25 - 0.35 if there is a strong hydrogen bond within the complex. The fractionation factor in such a case rises to a value around 0.7 - 0.8 as the hydrogen bond is weakened by increasing the distance between the two residues. The data for glucokinase suggest therefore that there is a particularly strong hydrogen bond between two residues in the free enzyme form E' with a fractionation factor of 0.30. If binding of glucose brings about a conformational change that increases the separation between the two hydrogen-bonded atoms there could be an increase in the fractionation factor to the value of 0.77 - 0.79 estimated for the enzyme-glucose complex.

A similar interpretation is possible if the isotope effect is due to stabilization in ²H₂O of E. One could envisage that after release of the product glucose 6-phosphate the glucose binding site has a more 'open' structure in E than in E'. This more 'open' structure may relax to E', the form of free enzyme with a fractionation factor of 0.30. If binding of glucose brings about a conformational change that increases the separation between the two hydrogen-bonded atoms there could be an increase in the fractionation factor to the value of 0.77 - 0.79 estimated for the enzyme-glucose complex.

We prefer the latter interpretation, in terms of stabilization of E in ²H₂O, as there has to be an increase in ²H₂O of the affinity of E' for glucose over that of E if we are to account for the negative co-operativity observed in §H₂O. To support this view there is a wealth of data giving evidence that ²H₂O stabilizes proteins. Thus, pyruvate carboxylase [38], glutamate dehydrogenase [39, 40], lactate dehydrogenase [40, 42] and fatty acid synthase [41] are some of the enzymes that have been reported to be stabilized against dissociation or denaturation by ²H₂O. The actual mechanism of this stabilization is a matter of some debate, but the effects of ²H₂O on protein structural equilibria have generally been interpreted as resulting from the stabilization of hydrophobic interactions [42] or hydrogen bonds [43] in ²H₂O. One of the differences between the two postulated forms of free glucokinase may therefore involve such interactions, which could constitute a medium effect: although the analysis in Table 1 shows that the curvature of Fig. 6 is too great to be explained solely as a medium effect it is certainly possible that a medium effect contributes to the results. The results for glucokinase do, however, resemble those for formate-tetrahydrofolate ligase [16], in which there is a single ground-state proton with a fractionation factor of 0.36, and also the conformation-associated ionization in ribonucleic [18].

We believe, therefore, that the solvent isotope effects that we have reported provide support for the mnemonic model as an explanation of the co-operativity that glucokinase shows with respect to glucose, as proposed previously [11, 14].

This work was supported by a grant from the Medical Research council to D. G. Walker, I. P. Trayer and A. C.-B., and by a Science and Engineering Research Council Studentship to D. P.-K. We are grateful to C. W. Wharton, R. Szawelski and I. P. Trayer for many useful discussions.

REFERENCES

D. Pollard-Knight, Department of Biochemistry, University of California, Berkeley, California 94720

A. Cornish-Bowden, Department of Biochemistry, University of Birmingham, P.O. Box 363, Edgbaston, Birmingham, West Midlands, England B15 2TT