The prediction of repetitive protein sequences from amino acid compositions

Cornish-Bowden (1983) demonstrated recently that the amino acid compositions of proteins correlate with their molecular sizes. He devised a new index ΔQ to assess the compositions of proteins relative to an average composition (of 118 proteins), and showed that for most proteins ΔQ was proportional to the reciprocal of protein size. Of the five proteins with anomalously high values for ΔQ, three had highly repetitive sequences and Cornish-Bowden went on to suggest that anomalously high values could be taken to indicate a repetitive sequence.

I have calculated ΔQ for two quite different proteins with repetitive sequences, the fibrous protein collagen and the lens protein γ-crystallin. Collagen chains have a repeating triplet structure, (Gly-Xaa-Yaa)$_n$, but the collagen genes have retained a 54 base-pair exon size in the triple helical region leading to the concept of an ancestral 54 base-pair sequence, and thus 18 amino acid sequence, for this protein (Yamada, 1980) although some variability had been noted in later work (Wozney et al., 1981). γ-Crystallin has the most symmetrical structure known for a globular protein, with a total of four motifs in two domains and evidence of a double gene duplication (Blundell et al., 1981).

The values of ΔQ for the $\alpha 1$ and $\alpha 2$ polypeptides of type I collagen are much higher than expected for polypeptides with about 1040 amino acid residues (Fig. 1). When plotted as if they had only 18 residues apiece they fall remarkably close to an extrapolation of the line that Cornish-Bowden (1983) drew through the points for 118 proteins (Fig. 1). This seems powerful support for Cornish-Bowden’s suggestion and indicates that the data was available to predict the repetition in the collagen structure years before it was deduced from the exon pattern of the gene.

The value of ΔQ for γ-crystallin is a little high for its size, but is much lower than would have been predicted for a protein with a four-fold repeat (Fig. 1). Another lens polypeptide, the βBp polypeptide of β-crystallin, shows sequence homology to γ-crystallin (Driessen et al., 1981), and has been predicted to have an almost identical three-dimensional structure (Wistow et al., 1981), and yet its value of ΔQ falls exactly on Cornish-Bowden’s line so that the four-fold repeat seen in the three-dimensional structure, in the amino acid sequence and, for another β-crystallin, in the gene (Inana et al., 1983) would not have been predicted by the Cornish-Bowden approach. An anomalous value for ΔQ might only be expected where homology of the repetitive sequences is strong, and.

![Fig. 1. Correlation between amino acid composition and reciprocal number of residues](image-url)
so the values for γ-crystallin and the βBp polypeptide are not altogether surprising because the sequence homology is weak (Driessen et al., 1981). However, the sequence repeat in the collagen chains is not striking.

In spite of the weak result from the lens proteins the striking result with collagen should encourage those who find that their favourite protein has a ΔQ_0 index double the expected value, or greater, to look for other evidence of a repetitive structure.

John J. HARDING
Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, U.K.
(Received 13 July 1983)

The prediction of repetitive protein sequences from amino acid compositions: a comment

The very large value of ΔQ_0 for the collagen polypeptides noted by Harding (1984) is very striking, and, as he remarks, provides powerful support for the ideas I proposed earlier (Cornish-Bowden, 1983). I did not consider collagen chains previously because attention was restricted to the 118 'superfamilies' for which complete sequences were available from the most recent supplement of the Atlas of Protein Sequence and Structure (Dayhoff, 1978). However, if collagen had been included it would have displayed a more divergent value of ΔQ_0 than any of those that I did consider.

A crystallin chain (the A-chain of α-crystallin from kangaroo) was included in my study, but as noted by Harding (1984) it does not give a high enough value of ΔQ_0 to suggest the repetitive structure that it possesses. This is not in itself surprising, because even if large ΔQ_0 values provide strong evidence of a repetitive structure, as I have argued, it does not follow that all repetitive proteins will have large ΔQ_0 values; without a mechanism to generate very low ΔQ_0 values it would probably be rash to attach much significance to them. Nonetheless, the value for the βBp polypeptide of β-crystallin calculated by Harding (1984) is so low if one treats it as a 51-residue polypeptide that a plausible explanation would be welcome.

My paper (Cornish-Bowden, 1983) unfortunately contained several typographical errors, some of which seriously affected the sense. These were corrected in Biochem. J. (1983) 213, following p. 770.

Athel CORNISH-BOWDEN
Department of Biochemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.
(Received 14 October 1983)

Dayhoff, M. O. (1978) Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, National Biomedical Research Foundation, Silver Spring, MD