The Effect of Natural Selection on Enzymic Catalysis

ATHEL CORNISH-BOWDEN

Department of Biochemistry
University of Birmingham
P.O. Box 363, Birmingham B15 2TT, England

(Received 30 June 1975)

Analysis of the free energy changes in enzyme catalysis shows that maximum rates at low enzyme concentrations are attained for enzymes with Michaelis constants close to the concentrations of their substrates in vivo. For intracellular enzymes with no control function the values observed under natural conditions are generally in accordance with expectation. For enzymes where the maintenance of a steady flow of products is the prime objective it is preferable to evolve much lower Michaelis constants; extracellular digestive enzymes such as pepsin accordingly act under saturating conditions in vivo.

1. Introduction

In recent years there has been extensive study of the evolution of proteins, but this has been concerned much more with structure than with function. In consequence, although much is known about the evolution of primary sequences (see, e.g. Margoliash, 1972), very little is known about the evolution of the catalytic properties of enzymes.

It is most convenient to discuss the likely effects of selective pressure on the catalytic properties of enzymes in relation to the Michaelis–Menten equation

\[v = \frac{k_{\text{cat}}[E]^s}{K_m + [S]} \]

which expresses the velocity \(v \) of many enzyme-catalysed reactions in terms of the total enzyme concentration \([E]\), the free substrate concentration \([S]\), and two constants, \(k_{\text{cat}} \) and \(K_m \), known as the catalytic constant and the Michaelis constant, respectively. These are characteristic of the enzyme, and \(k_{\text{cat}} \) can be regarded as the first-order rate constant for the conversion of the enzyme-substrate complex into products, whereas \(K_m \) is the dissociation constant of the complex under steady-state conditions. In a rigorous discussion it is necessary to distinguish between \(K_m \) and \(K_s \), the thermodynamic dissociation constant of the complex, but it is reasonable to equate the two for theoretical discussions of one-substrate enzymes in view of the observation that complex formation is generally diffusion-controlled (Hammes, 1968).

In two recent papers, Fersht (1974) and Crowley (1975) have argued that the likely effect of evolutionary pressure should be to increase both \(k_{\text{cat}} \) and \(K_m \), so that \(k_{\text{cat}} \) becomes as large as chemically possible, and \(K_m \) becomes large in comparison with the physiological value of \([S]\). For example, Fersht states that "maximal rates are attained for \(K_s > 10[S] \). Enzymes whose function is to turn over large amounts of
substrates rapidly, such as pepsin, lysozyme, chymotrypsin, etc., should have evolved
to high values of k_{cat} and K_m to maximize the rate of reaction"a". This conclusion is
surprising, first because it contradicts the widely held belief that strong binding
(low K_m) is an important component of enzymatic catalysis, and second because it
implies that evolution has been startlingly unsuccessful, at least in regard to the
enzymes mentioned. Since all three have ill-defined natural substrates, it is impossible
to make exact comparisons between K_m and s, but it is likely that all three are
saturated under normal physiological conditions. For example, for pepsin K_m is
much smaller than s for natural substrates (i.e. acid-denatured proteins) in the
stomach. This is illustrated by the protein assay for pepsin (Anson & Mirsky, 1932),
in which the rate is independent of haemoglobin concentration in the range 0·15\% to
0·3\%, i.e. the enzyme is saturated at low protein concentrations.

The extracellular hydrolases are in many ways atypical enzymes, and it may be
more appropriate to examine some of the better-studied enzymes of intermediary
metabolism, such as those involved in glycolysis. It is common to assume that
metabolite concentrations in vivo are of the same order of magnitude as the Michaelis
constants of the enzymes that catalyse their reactions, but it is difficult to be certain
of this because of the difficulty of getting reliable evidence. Nonetheless, some
efforts have been made to make the appropriate comparisons. For example, Lowry
& Passonneau (1964) estimated the values of s and K_m for most of the carbohydrate
metabolites of glycolysis in brain, with their appropriate enzymes. If hexokinase,
phosphofructokinase and pyruvate kinase are excluded on the grounds that their
functions are more complex than simply achieving maximum rates, the values of
s/K_m ranged from 0·1 for phosphoglycerate kinase to 18 for aldolase, with several
close to unity. These results suggest that whatever the direction of evolutionary
pressure on the glycolytic enzymes its magnitude has not been sufficient to drive K_m
values very far from s values.

2. Theory

(a) Free energy levels in enzymic catalysis

In his discussion of the evolution of enzymic catalysis, Crowley (1975) considered
the effects of slow changes in each of the rate constants that compose the empirical
quantities k_{cat} and K_m. This approach has the advantage that there is a simple
 correspondence between the observable parameters and those that are assumed to
evolve, but it does not give much insight into the structural changes that must
accompany any changes in catalytic properties. It is preferable therefore to use the
approach of Fersht (1974), who discussed the Michaelis–Menten equation in terms of
the thermodynamic properties of the presumed intermediate(s) and transition
state(s) of the reaction.

The simplest model is represented in Figure 1, in which the reaction is considered
to involve a mixture of free enzyme and substrate, $E + S$, with free energy G_0, a
Michaelis complex ES, with free energy G_1, a transition state X^\dagger, with free energy
G_2, and a mixture of free enzyme and product, $E + P$, with free energy G_3. No
transition state is shown between $E + S$ and ES, in recognition of the fact, noted
above, that the formation of ES is normally diffusion-controlled. Although the free
energy of activation of a diffusion-controlled process is not zero, because of a finite
entropy term, it is usually small, and can be ignored in this discussion.
EVOLUTION OF ENZYMIC CATALYSIS

![Diagram](image)

Fig. 1. Free energy relationships in the simplest Michaelis–Menten formulation of enzymic catalysis. The initial binding of substrate to enzyme to give the enzyme–substrate complex ES is assumed to be maintained at equilibrium and accordingly no energy barrier is shown for this step. The standard state of the substrate should be taken as the concentration that exists in the cell at the temperature and pH of the cell. This convention avoids any confusion that might result if the system were related to a very unnatural standard state.

The difference between G_a and G_3 is fixed by the nature of the reaction catalysed, and cannot be altered by any effect of the enzyme, unless it is present at a high enough concentration to bind a significant fraction of the reactants (cf. Theorell & Bonnichsen, 1951), in which case the observed change in equilibrium constant is apparent rather than real. It is convenient to assume that $G_a - G_3$ is large enough for the reaction to be essentially irreversible. Although the absolute values of G_a and G_3 may change, any changes can equally well be regarded as opposite changes in G_1 and G_2, so that G_a can be treated as a constant and G_1 and G_2 are the only energy levels whose variation under selective pressure need be considered.

The free energy levels define the values of K_m and k_{cat} in accordance with thermodynamics and the transition-state theory as follows,

$$K_m = K_a = \exp[(G_1 - G_0)/RT]$$ \hfill (2)

$$k_{cat} = \frac{RT}{N\hbar} \exp[(G_1 - G_2)/RT]$$ \hfill (3)

$$k_{cat}/K_m = \frac{RT}{N\hbar} \exp[(G_0 - G_2)/RT]$$ \hfill (4)

where R is the universal gas constant, T is the absolute temperature, N is Avogadro's number, and \hbar is Planck's constant. So the Michaelis–Menten equation may be written as follows,

$$v = \frac{RT \exp[(G_1 - G_2)/RT]e^q}{N\hbar \exp[(G_1 - G_0)/RT] + s}.$$ \hfill (5)

By considering the velocity only at very low substrate concentrations, one can regard evolution simply as an effect on k_{cat}/K_m, ignoring any individual effects on k_{cat} and K_m. Because $k_{cat}e^q/K_m$ is a first-order rate constant it can be directly compared with the first-order rate constant of the uncatalysed reaction, so it provides
a convenient index for the chemist to assess the efficiency of enzymic catalysis. But it seems unlikely that the main aim of evolution has been to impress theoretical chemists and it is more realistic to discuss how the reaction velocity can be maximized under the conditions that actually exist, i.e. finite substrate concentrations. In this case one cannot discuss evolution solely in terms of k_{cat}/K_m.

The conclusions that can be drawn about selective pressure are determined by the assumptions made about the degrees of freedom in the design of an enzyme. It is important therefore that these assumptions be stated clearly and justified, to permit assessment of the validity of any conclusions. The reasonable range of assumptions is likely to be bounded by two extreme cases: (i) G_1 and G_2^i are treated as independent variables, which is effectively the approach of Fersht (1974); and (ii) G_1 and $(G_2^i - G_1)$ are treated as independent variables. These will first be discussed separately and then be merged into a plausible compromise.

(b) G_2 and G_2^i treated as independent variables

Partial differentiation of equation (5) gives

$$\frac{\partial \ln v}{\partial G_1} = \frac{s}{RT(K_m + s)}$$

(6)

$$\frac{\partial \ln v}{\partial G_2^i} = -1/RT.$$

(7)

The first of these is positive and the second is negative under all conditions, so if G_1 and G_2^i can be manipulated independently, the effect of evolution should be to increase G_1 and decrease G_2^i, i.e. to increase both K_m and k_{cat}/K_m without limit. (More rigorously, a limit to the increase in K_m would be reached if $G_2^i - G_1$ were to become very small or negative; in this event it would no longer be possible to ignore the transition state in the formation of ES and it would not be valid to equate K_m with K_*.) This agrees with the conclusion of Fersht (1974).

(c) G_2 and $(G_2^i - G_1)$ treated as independent variables

Let $\Delta G^i = G_2^i - G_1$. Then partial differentiation of equation (5) gives

$$\frac{\partial \ln v}{\partial G_1} = -\frac{K_m}{RT(K_m + s)}$$

(8)

$$\frac{\partial \ln v}{\partial \Delta G^i} = -1/RT.$$

(9)

Thus if G_1 and ΔG^i can be manipulated independently, it is advantageous to decrease both without limit, i.e. to make K_m as small and k_{cat} as large as possible. For K_m this conclusion is the opposite of that for the previous case.

(d) G_1 and G_2^i treated as interdependent

It is clear from the contrary conclusions about K_m required by the two extreme cases that their defining assumptions must be examined to decide whether either can be regarded as reasonable, or whether some intermediate case might be better. On the one hand it is implausible to propose that G_2^i can be altered by structural modifications to the enzyme without any concomitant change in G_1. Plainly there
EVOLUTION OF ENZYMIC CATALYSIS

must be many respects in which changes in the interactions between enzyme and substrate in the ES complex must be matched by similar changes in the interactions in the transition state. This must surely be true of most interactions between groups that undergo no chemical changes during the reaction, for example, between the hydrophobic parts of the enzyme and substrate in peepin catalysis. On the other hand, the structures of the substrate and the transition state are not identical, and so it is unreasonable to assume that all changes in G_1 are exactly paralleled in G_2, as implied in the second extreme case. A reasonable compromise is to permit changes in G_1 and G_2 in the ratio of $1: r$, where r is a constant fraction in the range 0 to 1.

If G_1 and G_2 are referred to arbitrary datum points G_{10} and G_{20}, they may be defined as

$$G_1 = G_{10} + \lambda$$

and

$$G_2 = G_{20} + r\lambda,$$

where λ is a parameter that may be adjusted under evolutionary pressure at constant r. Then equation (5) may be written

$$v = \frac{RT\exp((G_{10} - G_{12} + (1 - r)\lambda)/RT)s}{N\lambda\exp((G_{10} - G_{20} + \lambda)/RT) + s}$$

and differentiation gives

$$\frac{d \ln v}{d \lambda} = \frac{s(1 - r) - rK_m}{RT(K_m + s)}.$$

Thus v is a maximum when $K_m = s(1/r - 1)$. So if the degree of dependence of G_2 on G_1 is assumed to be between 10% and 90%, i.e. 0.1 < r < 0.9, then the optimum value of K_m should be within one order of magnitude of s.

(e) **Magnitude of selective pressure at non-optimum values of K_m**

Although the value of λ for which v is a maximum clearly provides a target for evolution, it may not necessarily be reached if the selective pressure becomes negligible first. The value of $RT(d \ln v/d \lambda)$ provides a convenient measure of selective pressure and is plotted against K_m/s for various values of r in Figure 2. In no circumstances is there strong pressure to take K_m/s far outside the range 0.1 to 10; in other words, K_m is likely to be within an order of magnitude of s, even if its theoretical target is zero ($r = 1$) or infinity ($r = 0$).

3. Discussion

(a) **Physiological examples and apparent exceptions**

Evolution appears to have been successful in achieving appropriate K_m values for the enzymes of glycolysis, and indeed of the whole of intermediary metabolism if the commonly held views about likely physiological substrate concentrations are correct. But the extracellular hydrolytic enzymes, such as pepsin and chymotrypsin, appear to be exceptions in that they have physiological K_m values much smaller than one might expect, and it is appropriate to enquire why this should be. The most likely explanation is found in the need of many higher animals to maintain constant energy and metabolite supplies without continuous feeding. For energy this is achieved to a
large extent by storing carbohydrate in the liver as glycogen. But no comparable storage polymer seems to exist for amino acids, and there would therefore be a positive disadvantage in permitting protein digestion to proceed very rapidly, with a half-time of minutes or seconds. It is far more valuable to have a half-time of several hours, to permit a fairly constant flow of amino acids into the body at all times. Since the digestive system is much more tolerant than any cell of fluctuations in its composition, it is advantageous to retain surplus amino acids in the gut rather than to permit a wildly fluctuating rate of absorption. This requirement is satisfied by ensuring that the digestive system is saturated under normal conditions.

Support for this interpretation of the requirements for efficient digestion is provided by the occurrence of chymosin (rennin) instead of pepsin in the stomachs of young mammals. Since pepsin has chymosin activity, but chymosin has very restricted pepsin activity, particularly in the hydrolysis of casein (Foltmann, 1967), it is clear that chymosin fulfils a need for an enzyme with limited activity, and that it is too simple to regard very rapid protein digestion as a universal evolutionary aim.

(b) Effect of inhibition

Physiological reactions often proceed in the presence of products and other inhibitors at sufficient concentrations to cause significant inhibition. Since such inhibition is usually either wholly or largely competitive, it follows that K_m values estimated under idealized conditions may significantly underestimate the functional values in vivo. For example, Kahana et al. (1960) have estimated for glucose phosphate isomerase that inhibitors are present in the cell in sufficient concentrations to raise the K_m threefold for glucose 6-phosphate. But this may well be an extreme case and a more typical factor might be in the range 1-0-fold to 1-5-fold, which would not appreciably alter the conclusions of this paper.
(c) Catalysis at high enzyme concentrations

Another important difference between standard practice in steady-state experiments and the situation in the cell is in the concentration of enzyme, which may well be several orders of magnitude greater in the cell (Sere, 1968). In some special cases, such as glutamate dehydrogenase (Frieden & Colman, 1967), the kinetic properties of the enzyme may be drastically altered by association at high concentrations; but more generally all enzymes show deviations from the Michaelis–Menten equation at enzyme concentrations greater than about 0.1 \(K_m \). These result from the fact that at high enzyme concentrations it is invalid to assume that the free and total substrate concentrations are equivalent. The steady-state rate is given by an equation of the following form (Laidler, 1955),

\[
v = \frac{1}{4} v_{\text{cat}} (K_m + s_0 + \epsilon_0) \left(1 - \left[1 - 4\epsilon_0 s_0/(K_m + s_0 + \epsilon_0)^2\right]^{1/2}\right),
\]

in which \(s_0 \) is the total substrate concentration. In spite of its very different appearance, equation (14) defines a dependence of \(v \) on \(s_0 \) that is qualitatively similar to the Michaelis–Menten equation, as illustrated in Figure 3. The main difference is that the transition from first-order to zero-order dependence on \(s_0 \) is more abrupt, so that as \(s_0 \) increases the curve tends towards the type of curve presented in most textbooks of biochemistry as a rectangular hyperbola.

The practical effect of working at high enzyme concentrations may be judged from the fact that the half-saturation point is raised by \(\frac{1}{2} \epsilon_0 \) (J. R. Griffiths, personal communication; cf. also Myers, 1952), so that one can consider the effective Michaelis constant to be about \(K_m + \frac{1}{2} \epsilon_0 \). Since \(\epsilon_0 \) is unlikely to exceed \(K_m \) by a significant amount under physiological conditions, this effect will not be large enough to invalidate the conclusions of this paper.

![Figure 3](image-url)
(d) Response to changes in flux

It may be questioned whether the achievement of high rates of reaction at low enzyme concentrations has been the only major objective of evolution. Any metabolic pathway should possess the capacity for enduring abnormal circumstances, such as an increase in flux above normal levels. For an enzyme obeying the Michaelis–Menten equation the capacity to respond to changes in flux depends on the normal value of s/K_m, as discussed by Atkinson (1969). Thus, an enzyme needs a safety factor to protect the cell against catastrophic increases in metabolite concentrations, which must be weighed against the demands of efficiency under normal conditions.

It is difficult to predict how large the safety factor ought to be; Atkinson (1969) has argued that a pathway should be able to tolerate a flux of more than double the normal maximum, but this may underestimate the capacity of a healthy organism for maintaining homeostasis and a much smaller safety factor may be adequate. An excessive safety factor per se may well be wasteful of catalytic capacity (Cleland, 1967), although the analysis in this paper provides some support for Fersht's (1974) view that a small value of s/K_m may evolve for reasons quite independent of the need for a safety factor.

(e) Conclusions

If catalytic efficiency is considered solely from the point of view of maximizing flux, then it follows that enzymes should have evolved to possess K_m values within one order of magnitude of the physiological concentrations of their substrates. But this conclusion must be seen in the light of the various complicating aspects that exist. Both the presence of inhibitors and high enzyme concentrations indicate that the effective physiological K_m value is likely to be somewhat greater than the value measured under idealized conditions. In addition, the need for a safety factor suggests that K_m should exceed the normal value of s.

The glycolytic enzymes appear to support this analysis, except that aldolase, with $s/K_m = 18$ (Lowry & Passonneau, 1964), is nearly saturated in vivo. But this ratio may need to be adjusted downwards, to allow for the inhibition of the enzyme by various metabolites (Spolter et al., 1965), and the difficulties of measuring concentrations and Michaelis constants in vivo are such that one stray value is not surprising.

Several classes of enzymes may have suffered evolutionary pressures rather different from a simple demand for a maximum rate. For control enzymes the most crucial need in evolution was probably to establish a high sensitivity to environmental changes. For enzymes involved in digestion the achievement of a constant rate of product release may well have been more important than attainment of a high rate. For enzymes primarily used for detoxication the safety factor may assume paramount importance. But for most enzymes catalysing reactions of intermediary metabolism under conditions of homeostasis, the attainment of high rates is likely to have been the prime evolutionary objective; this leads one to expect K_m values close to physiological substrate concentrations.

REFERENCES
EVOlution OF ENZYMIC CATALYSIS